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Complex systems and networks

Many systems involve an incredible number of components
interacting in a network:

Interactions between genes, proteins, and metabolites
integrates in live cells and are a prerequisite of life.
Neurons and their connections in the brain/nervous system
determine the neural network (1011 nodes)
The interactions between phones/computers (through wired
internet connections or wireless links) determine
communication networks
Trades determine commercial networks
World Wide Web (1012 nodes), social networks ...

⇓
COMPLEX SYSTEMS
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Common features of very different networks

21st century:

It becomes possible to collect data and draw maps of the evolution
of networks characterized by:

Differences: size, nature of components and of interactions,
scope
Analogies: organizing principles that allow the emerging of
general laws for classes of networks

Guiding principle of studies: to uncover general organizing
principles of the networks and each time verify how widely they
apply.
Typical mathematical tools from the theory of Random Graphs
(since 1959 paper by Paul Erdős and Alfréd Rényi).
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Random network.

To model the complexity of a real system we decide where to place
the links between the nodes
A random network assume that the links appear randomly between
the nodes, typically:

G(N, p): fixes the probability p that two nodes are connected
G(N, L): fixes the total number of links L

A random network consists of N nodes where each node pair is
connected with probability p

Click here to see image 3.3, chapter 3.
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Graph Terminology

Degree of a vertex: Number of links it has to other nodes
Adjacency Matrix A: for a directed network of N nodes has N
rows and N columns, Aij = 1 if there is a link pointing from
node i to node j and Aij = 0, otherwise.
Bipartite graph: is a network whose nodes can be divided into
two disjoint sets X and Y such that each link connects a
X -node to a Y -node.
Path length:represents the number of links the path contains
Clustering coefficient: accounts for the degree to which the
neighbors of a given node link to each other.
Degree Distribution: it is the probability pk that a randomly
chosen node has degree k.
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Do random network fit the majority of real networks?

In a random network implementation, nodes may exhibit very
different numbers of links: this fact is highlighted by the distribution
pk .
The degree distribution is easily computed as a Bi(N − 1, k) that
for large N (and small p) is well approximated by a Poisson of
parameter 〈k〉
Poisson distribution implies that a large part of the nodes has
degree in 〈k〉 ±

√
〈k〉

This last feature conflicts with features of many real networks.
Also other features of random networks show conflicts between
observed data and mathematical forecast. For example, Erdős and
Rényi proved that in a random network a giant component appears
if and only if each node has on average more than one link but
this feature is not observed in many real networks. Barabási
A.-L. (2002). Network Science; https://networksciencebook.com/
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Scale free versus random networks

A scale-free network is a network whose degree distribution follows
a power law

pk ∼ k−γ (1)

Click here to see image 4.4, chapter 4.
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Scale Free Networks
Many real world networks exhibit a scale free behavior.

Large scale hypertexts (like WWW)
Social networks (like Facebook)
Financial networks (as interbank payment networks)
Protein-protein interaction networks
Paper citation networks
Airline networks

Remark
Albert and Barabási* suggest an increase of robustness to perturbations
of small-world networks than other network architectures. In a
small-world network with a degree distribution following a power-law, it is
improbable that the deletion of a random node causes a dramatic
increase in mean-shortest path length.

Albert R.; Barabási A.-L. (2002). "Statistical mechanics of complex networks".
Rev. Mod. Phys. 74 (1): 47–97. 8/35



Emergence of the scale free behaviour
Why are scale free networks often observed?
Which attachment rules determine scale free distributions?
How robust is the scale free behaviour: does it dominate other
types of asymptotics?
What happens when we merge different attachment rules, do
homogenization phenomena arise?
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Preferential attachment and scale free behavior

Barabasi and Albert* first proposed the Preferential
Attachment rule as a cause of Scale Free Phenomenon in
the WWW but the basic idea was already present in the
classical papers by U. Yule (1925) and H.A. Simon (1955)
models for different phenomena.
Bollobás B. et al.** prove rigorously the emergence of the
Scale Free Phenomenon in presence of Preferential
Attachment rule

*Barabási, A.L.and Albert, R. (1999). "Emergence of scaling in random
networks". Science. 286 (5439): 509–51
**Bollobás B., Riordan O., Spencer J. and Tusnády G. (2001) The degree
sequence of a scalefree random graph process, Random Struct. Algorithms 18
(3) 279–290.
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Robustness of the scale free property
In different papers we considered variants of 4 scale free models
Four Scale free Models

Yule Model
Simon Model
Barabasi-Albert Model
Parid Model (for suitable choice of the parameters)

We studied their robustness with respect to the scale free property
in presence of:

Detachment
Nonlinearity/ Fractionality
Mixed Model: Uniform and Preferential attachment
Mixed Model: Preferential and Anti-Preferential attachment
Parid Model (Random number of edges)
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Yule Model (Udny Yule, 1925) as a model of WWW

Reminder
A Yule process of paramenter δ is a linear birth process
characterized by birth rates δn = nδ.

The Yule model is a continuous time process, defined through two
Yule processes of parameters β and λ, resepctively. It was
proposed to model the number of species per genus

A first Yule process {Nβ(T )}T≥0, β > 0, accounts for the growth of
the number of pages (vertices).
As soon as the first vertex is created, a second Yule process,
{Nλ(T )}T≥0, λ > 0, starts describing the creation of in-links to the
vertex.
The evolution of the number of in-links for the successively created
vertices, proceeds similarly.
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Scale free behaviour of the Yule Model
Yule–Simon distribution

Let NT be the degree of a page (vertex) chosen uniformly at
random at time T . Then, if ρ = λ/β,

lim
T−→∞

P(NT = k) = ρ
Γ(k)Γ(1 + ρ)
Γ(k + 1 + ρ) = ρB(k, 1 + ρ), k ≥ 1.

The right tail of the above pmf decays as a power-law. For large k,

ρB(k, 1 + ρ) ≈ k−(ρ+1)
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Simon model (Herbert A. Simon, 1955) as a model
of WWW

v1

(a)

v1 v2

(b)

v1 v2 v3

(c)

(1)

α

(1)

Figure: Construction of the random graph G t
α associated to Simon model. (a)

Begin at time 1 with one single vertex and a directed loop. (b) Suppose some
time has passed, in this case, the picture corresponds to a realization of the
process at time t = 4. (c) Given G4

α form G5
α by either adding with probability

α a new vertex v3 with a directed loop, or adding a directed edge with
probability given by

P(v −→ vj) = (1− α)~d(vj , t)
t , 1 ≤ j ≤ t.
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Main result on Simon model

Let ~Nk,t be the number of vertices with in-degree k at time
t = n(m + 1), n ∈ N, in the Simon model.

~NSimon
k,t
Vt

P−→ 1
1− α

Γ(k)Γ
(
1 + 1

1−α

)
Γ
(
k + 1 + 1

1−α

) ∼ 1
1− αk

−1− 1
1−α ,

⇒ It seems reasonable to look for a connection between Yule and
Simon model!
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Barábasi-Albert Model

v1

(a)

v1

(b)

v1 v2

(c)

Figure: Construction of (G t
m)t≥1 for m = 2. (a) Begin at time 1 with one

single vertex and a directed loop. (b) Suppose some time has passed, in this
case, the picture corresponds to a realization of the process at time t = 2.
Keep in mind that here m = 2 and therefore m = 2 directed edge are added to
the graph by preferential attachment rule (but at this point the only possible
choice is the vertex v1). (c) Here time is t = 4. A new vertex v2 already
appeared at time t = 3 together with a directed loop. At time 4 instead the
first of the m edges that must be added to the graph is chosen (red dashed
directed edges) by means of the preferential attachment probabilities .
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Barábasi-Albert Model
Barabási and Albert model in terms of a random graph process:

Add at each time step a vertex with m, m ∈+, directed edges.
If m = 1, (G t

1)t≥1 is a random graph process with G t
1 directed

graph starting at time t = 1 with one vertex v1 and one loop.
Given G t

1 form G t+1
1 add the vertex vt+1 together with a single

edge directed from vt+1 to vj , 1 ≤ j ≤ t + 1, with probability

P(vt+1 −→ vj) =
{d(vj ,t)

2t+1 , 1 ≤ j ≤ t,
1

2t+1 , j = t + 1.
(2)

For m > 1 define the process (G t
m)t≥1 by running the process

(G t
1) on the sequence of imaginary vertices v ′1, v ′2, . . . , then

form the graph G t
m from Gmt

1 by identifying the vertices
v ′1, v ′2, . . . , v ′m to form v1, v ′m+1, v ′m+2 . . . , v ′2m to form v2 ...

* Bollobás, B.; Riordan, O.; Spencer, J.; Tusnády, G. (2001). "The degree
sequence of a scale-free random graph process". Random Structures and
Algorithms. 18 (3): 279–290 17/35



Relations: Yule-Simon-Barabasi Albert models*
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Robustness with respect to Detachment (Death)

We study the consequences of detachment of in-links
(death).
This is accomplished by considering the Yule model and
replacing the linear birth process governing the growth of
in-links with a linear birth-death process.
It turns out that the introduction of the possibility of
detachment of in-links in the Yule model still leads to an
analytically tractable model and thus still permits to obtain
exact results.
Formulae* are ugly but closed form expressions can be
obtained

*P. Lansky, F. Polito, LS (2014) The role of detachment of in-links in scale-free
networks. J. Phys. A 47, 345002
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Robustness with respect to Detachment (Death)

The presence of detachment kills the scale free behaviour in the
critical and sub-critical cases (λ ≤ µ)
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Generalization: Death
Results: Fitting real data
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Figure: Fit of the empirical probability mass function for the number of
in-links in the WWW. Data are taken from Web Data Commons,
University of Manheim. It can be seen that the model (in red) fits the
data even for small values of n ((λ;µ;β) = (4; 3.8; 0.272)). In the inset,
the empirical distribution function calculated on the data.
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Robustness with respect to fractional linear growth
We used Yule-like models to investigate the case of fractional
linear growth

Finite time: the distribution of the number of in-links for a
webpage chosen uniformly at random is rather different from
that of the classical Yule model
When t diverges Scale free appears if ρ < 1. We have again
the Yule-Simon distribution but the parameter ρ has a new
meaning involving the fractionality index ρ = λr

βν .

Remark
Any empirical Yule-Simon distribution recorded on real data can be
consequence either of an underlying classical Yule model or of a
fractional linear Yule model with the same value of ρ.

*P. Lansky, F. Polito, LS (2016) Generalized Nonlinear Yule Models. J. Stat.
Phys. 165, 661-679
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Different attachment rules - social networks

The attachment rule is selected to account for two different habits
of people joining a group.*

Each individual can either choose its friend only within the
group of its peers (and this typically happens without any
specific preference for one of them)⇒ Uniform attachment
mechanism (with probability p ∈ [0, 1])
Among all nodes of the social ⇒ a rich-get-richer mechanism
acquires more relevance since old nodes have already a
consolidated status in the network network (with a preference
for those more popular) (with probability 1− p ∈ [0, 1])

* A. Pachon, LS and S. Yang (2018) Scale free behavior of networks with the
copresence of preferential and uniform attachment rules. Physica D 371,1-12
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Theorem

Consider the UPA model with fixed window’s size l ∈ N, and let
N(k, t) be the number of nodes in the network with degree k at
the end of period t, and P̄(k) := limt→∞[N(k, t)]/t. Then,

N(k, t)
t → P̄(k) (3)

in probability as t →∞, where for l = 1

P(k) =


2(1−p)

3−p , if k = 1
(1−p)2

(2−p)(3−p) , if k = 2
(1−p)2

(2−p)(3−p)B
(
k, 1 + 2

1−p

)
, if k > 2,

and for l > 1
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Theorem

P(k) =


2

(3−p)
(
1− p

l
)l
, ik k = 1

2
2+k(1−p)

(
p
l (Hk−1 − Hk) + (1−p)(k−1)

2

)
P(k − 1), if k = 2, . . . , l + 1

B
(

k,l+2+ 2
1−p

)
B
(

k+1+ 2
1−p ,l+1

)P(l + 1), if k > l + 1,

with B(x , y) the Beta function and

Hk =
(p
l

)k−1 l−(k−1)∑
m=1

(
l −m

l −m − (k − 1)

)(
1− p

l

)l−m−(k−1)
, k ≥ 1.

(4)
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Sketch of the proof

Proof.
The proof includes the following steps:

1 we determine recursively E [N(k, t)], k = 1, 2, ...;
2 we prove the existence of P(k) := limt→∞ E [N(t, k)]/t,
3 we determine an explicit expression for P(k),
4 we use the Azuma–Hoeffding Inequality to prove convergence

in probability of N(k, t)/t to P(k).
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Robustness of scale free behaviour for the UPA model
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Robustness of scale free behaviour for the UPA model

Remark
1 The scale free behavior does not disappear by merging

preferential and uniform attachment rules.
2 Different weights between preferential and uniform

attachment rules change the exponent of the power law
3 The value of l changes the starting value of t to observe the

power law behavior (some connections are “wasted” and do
not contribute to the rich-get-richer mechanism. ).
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Preferential and anti-preferential attachment
1 Let Yt , t = 1, 2, . . . be i.i.d. Bernoulli r.v. of parameter

p ∈ [0, 1] independent of (Gt), t ≥ 1.
2 Let G1 be a graph with a single vertex v1 and m self-loops.
3 For every t ∈ N, construct Gt+1 from Gt by adding a new

vertex vt+1 and add m edges between vt+1 and vertices of Gt
4 For 1 ≤ i ≤ t, independently for each r ∈ {1, . . . ,m}, choose

the m target vertices in Gt according to the following
procedure:

If Yt+1 = 0, we select m random vertices W 1
t+1, . . . ,Wm

t+1
from Gt according to the preferential attachment mechanism

P(W r
t+1 = vi |Ft) = d(vi , t)

2mt , (5)

If Yt+1 = 1 we select m random vertices W 1
t+1, . . . ,Wm

t+1 from
Gt according to the anti-preferential attachment mechanism

P(W r
t+1 = vi |Ft) = 2mt + 1− d(vi , t)

t(2mt + 1− 2m) . (6)
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Results for the PA-APA model

The anti-preferential mechanism determines a change of the
exponent of the degree distribution of the model: the
asymptotic degree distribution of such random graph has a
right tail decaying as a power-law with exponent
(p − 3)/(1− p), p ∈ [0, 1).
The AP-APA model is able to recover any power law with
exponent in (∞,−3) modifying the parameter p.
In the pure-antipreferential attachment regime the model
tends to produce a homogenization of vertices’ degree

*U. De Ambroggio, F. Polito, LS (2014) On dynamic random graphs with
degree homogenization via anti-preferential attachment probabilities. Physica
D: Nonlinear Phenomena 414
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Scale free behaviour in preferential attachment graphs with
random initial degree

The scale free behaviour The Barabási–Albert model corresponds
to the decaying of its degree distribution as a power law with some
characteristic exponent. ⇒ concentration results.

When the number of newly added edges is deterministic and
constant the concentration results always hold true
When the graph process is defined so that, at each integer
time t, a new vertex with a random number of edges attached
to it, is added to the graph, the existence of asymptotic
concentration heavily depends on the distributional properties
of the initial degrees themselves.
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Robusteness of the scale free behaviour for the PARID
model

Parid model:
In the first step of the process we add two vertices v0 and v1
and connect these two vertices with X1 edges.
In each subsequent step t ≥ 2 of the process a new vertex, vt
along with Xt edges are added.
Each of these Xt edges is generated in the following manner:
a vertex vi , where i ≤ t − 1, is selected with probability

di (t − 1)
2Λ(t − 1) ,

where di (t − 1) denotes the degree of vertex vi after step
t − 1, Λ(t) =

∑t
i=1 Xi and the edge {vi , vt} is added to the

multigraph.
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Is the Parid model robust with respect to the scale free
property?

The answer changes according with the distribution of the added
edges:

When X is bounded the answer is affirmative *
When X is regularly-varying of parameter α = 2 concentration
occurs together with the scale free behaviour
When X is regularly-varying of parameter α ∈ (1, 2) no
concentration occurs**

*C. Cooper and A. Frieze.(2003) A general model of web graphs. Random
Structures Algorithms, 3,311–335
** T. Makai, F. Polito and LS (2024) Do random initial degrees suppress
concentration on preferential attachment graphs? arXiv:2402.04927
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Joint works with
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Thank you!
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