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Equations modeling incompressible fluid flow:

ut + u · ∇u = −∇p + ν∆u,

div u = 0.

ν = 0: Euler equations, ideal/inviscid
ν > 0: Navier-Stokes equations, viscous
For smooth solutions have

d
dt

1
2

�
|u|2 = −

�
u · [(u · ∇)u]−

�
u · ∇p + ν

�
u ·∆u

= −1
2

�
div(|u|2u)−

�
div(up)− ν

�
|∇u|2

≡ −ν
�
|∇u|2.

Smooth inviscid flows (ν = 0) conserve kinetic energy
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Anomalous dissipation is a cornerstone of turbulence theory:
dissipation rate does not vanish: K41 0th law of turbulence;
inviscid dissipation : related phenomena, inviscid fluid flows (ν = 0)

which do not satisfy energy balance;
Turbulence←→ anomalous dissipation←→ irregular flows

Onsager 1949:

inviscid dissipation may occur in inviscid flow with “less than 1/3
regularity”

inviscid flows with “more than 1/3 regularity” conserve energy

Research developed along two fronts: flexibility × rigidity

flexibility↔ wild solutions↔ convex integration

Concentrate on rigidity for 2D flows.
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Brief history: regularity threshold for energy balance

Frisch-Sulem 1975: L∞
t H5/6

x ;

Eyink 1994, Constantin, E, Titi 1994: L3
t B1/3+ϵ

3,∞ .
State of the art – Cheskidov, Constantin, Friedlander, Shvydkoy
2008: L3

t B1/3
3,c0

, 3D and 2D.
2D result – Duchon, Robert 2000: initial vorticity in Lp, p > 3/2,
implies conservation of energy.
Extension to p = 3/2 follows from Cheskidov, Constantin,
Friedlander, Shvydkoy. Note: velocity in L3

t W 1,3/2
x .

Kraichnan 2D turbulence theory: postulate forward enstrophy
cascade→ regularizing effect in 2D

Suggests existence of dynamical mechanism preventing
anomalous dissipation in 2D even for ‘supercritical’ flows
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Scaling and Onsager-critical spaces

Energy flux:
� �

u · [(u · ∇)u] dx dt .

Dimensions: UU
U
L

LNT = U3LN−1T .

Shvydkoy introduced Onsager-critical spaces: B is Onsager-critical if

∥ · ∥3B ∼ U3LN−1T .

Examples of Onsager-critical spaces:
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2D flows

2D Euler equations on the torus T2 ≡ [0,2π]2, with initial data
u0 ∈ L2(T2):


∂tu + (u · ∇)u = −∇p
div u = 0
u(t = 0) = u0.

Initially interested in weak solutions for which vorticity ω ≡ curlu is p-th
power integrable, for some p ≥ 1.

Note:
Smooth vorticity transported in 2D, Lp bounds preserved by
evolution
wild solutions: very recent, first example of ∃ with control on
integrability of vorticity cf. Bruè, Colombo, Kumar, ω ∈ Lp, p > 1, p
very close to 1.
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Initially interested in weak solutions for which vorticity ω ≡ curlu is p-th
power integrable, for some p ≥ 1.

Note:
Smooth vorticity transported in 2D, Lp bounds preserved by
evolution
wild solutions: very recent, first example of ∃ with control on
integrability of vorticity cf. Bruè, Colombo, Kumar, ω ∈ Lp, p > 1, p
very close to 1.
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Definition
Fix T > 0. Let u0 ∈ L2(T2) sth ω0 = curlu0 ∈ Lp(T2), some p ≥ 1. Say
u ∈ C(0,T ;L2

weak(T2)) weak solution of incompressible Euler
equations, initial data u0, if ω = curlu ∈ L∞(0,T ;Lp(T2)) and

1 for every test vector field Φ ∈ C∞([0,T )× T2) such that
divΦ(t , ·) = 0 the following identity holds true:

� T

0

�
T2

∂tΦ · u + u · DΦu dxdt +
�
T2

Φ(0, ·) · u0 dx = 0.

2 For almost every t ∈ (0,T ), div u(t , ·) = 0, in the sense of
distributions.

Existence is known (DiPerna, Majda 87; Vecchi, Wu 93), uniqueness is
known in L∞...and “nearby". Nonuniqueness in Lp, any 2 < p <∞,
with nontrivial rough forcing (Vishik, 2018, see also Albritton, Bruè,
Colombo, DeLellis, Giri, Janisch, Kwon, 2021). Recent work:
nonuniqueness in Lp, no forcing, p > 1, p close to 1 (Bruè, Colombo,
Kumar, 2024).
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Vanishing viscosity solutions

Definition

Let u ∈ C(0,T ;L2
w (T2)). We say that u is a physically realizable weak

solution of the incompressible 2D Euler equations with initial velocity
u0 ∈ L2(T2) if the following conditions hold.

1 u is a weak solution of the Euler equations;
2 there exists a family of solutions of the incompressible 2D

Navier-Stokes equations with viscosity ν > 0, {uν}, such that, as
ν → 0,

uν ⇀ u weakly∗ in L∞(0,T ;L2(T2));
uν(0, ·) ≡ uν

0 → u0 strongly in L2(T2).

The family {uν} is called a physical realization of u.
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Energy conservation

Theorem (Cheskidov,Lopes Filho, NL, Shvydkoy 2016)

Let u ∈ C(0,T ;L2
w (T2)) be a physically realizable weak solution of the

incompressible 2D Euler equations. Suppose that u0 ∈ L2 is such that
curlu0 ≡ ω0 ∈ Lp(T2), for some p > 1. Suppose that there is a physical
realization {uν} such that {ων

0} is bounded in Lp(T2). Then u
conserves energy.

Obs. 1 < p < 3/2 ‘supercritical’.
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Discussion of proof:
Assume ω0 ∈ Lp(T2) for some p < 2, and ω0 /∈ L2(T2) otherwise, the
result is trivial.
u is physically realizable =⇒ ∃ physical realization {uν} solutions of
Navier-Stokes with {ων

0} bounded in Lp. ων = curluν .
Vorticity equation:

∂tω
ν + uν · ∇ων = ν∆ων .

Write y = y(t) = ∥ων∥2L2 and C0 = supν ∥ων
0∥

− 2p
2−p

Lp .
Energy methods plus Gagliardo-Nirenberg, plus maximum principle for
Lp-norm of vorticity give:

y ′ ≤ −2C0ν y
2

2−p and
2

2− p
> 2.

Integrate in time, use ∥ων
0∥L2 → +∞ and substitute y(t) = ∥ων∥2L2 to get

∥ων(t , ·)∥2L2 ≤ (o(1) + Cνt)−
2−p

p .
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Energy identity for 2D Navier-Stokes:

d
dt
∥uν∥2L2 = −2ν∥ων∥2L2 . (1)

Integrate in time and use the estimate for vorticity to get

0 ≥ ∥uν(t , ·)∥2L2 − ∥uν
0∥2L2 ≥ −2ν

� t

0
(o(1) + Cνs)−

2−p
p ds

= −C

[(
o(1) + C̃νt

) 2(p−1)
p − o(1)

]
≳ −(νt)

2(p−1)
p + o(1).

Now p > 1 =⇒ RHS→ 0 as ν → 0. Therefore:

lim
ν→0
∥uν(t , ·)∥2L2 − ∥uν

0∥2L2 = 0.

DiPerna-Majda 1987, ω ∈ Lp, p > 1, non-concentration result:

lim
ν→0
∥uν(t , ·)∥2L2 = ∥u(t , ·)∥2L2 .

Strong convergence of initial data =⇒ ∥u(t , ·)∥2L2 = ∥u0∥2L2 as desired.
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Key steps in the proof:

Show dissipation vanishes:

ν

� T

0
∥ων(t , ·)∥2 dt → 0 as ν → 0 :

ν

� T

0
∥ων(t , ·)∥2 dt ≲ ν2(p−1)/pT 2(p−1)/p,

(to get this use Grönwall for

dy
dt
≤ −Cνy2+ε,

for y = ∥ων∥2L2 .)
Then use strong convergence in L2 of physical realizations:

∥u(t , ·)∥2L2 − ∥u0∥2L2 = lim
ν→0
∥uν(t , ·)∥2L2 − ∥uν

0∥2L2 = 0.
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� T

0
∥ων(t , ·)∥2 dt ≲ ν2(p−1)/pT 2(p−1)/p,

(to get this use Grönwall for

dy
dt
≤ −Cνy2+ε,

for y = ∥ων∥2L2 .)
Then use strong convergence in L2 of physical realizations:

∥u(t , ·)∥2L2 − ∥u0∥2L2 = lim
ν→0
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Surprisingly, vanishing dissipation is a consequence of strong
convergence. In fact, it holds that:

Theorem (Lanthaler, Mishra, Parés-Pulido 2021)

Suppose u0 ∈ L2(T2) and u is physically realizable weak solution with
u(0) = u0. Let uν physical realization: uν ⇀ u; uν(0)→ u0. Then the
following are equivalent:

1 uν → u strongly in Lp((0,T );L2(T2)), some 1 ≤ p <∞;
2 u conservative weak solution.

In particular, it was established that:

Strong convergence in L2 =⇒ no anomalous dissipation,

Strong convergence in L2 + no anomalous dissipation
=⇒ no inviscid dissipation.
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Proof of ‘no inviscid dissipation =⇒ strong
convergence’

For any 0 ≤ t ≤ T , have

T∥u(t)∥2L2 =

� T

0
∥u(s)∥2L2 ≤ lim inf

ν→0

� T

0
∥uν(s)∥2L2

≤ lim sup
ν→0

� T

0
∥uν(s)∥2L2 ≤ lim sup

ν→0
T∥uν(0)∥2L2

= T∥u(0)∥2L2 .

Therefore all ≤ are = and have convergence of norms.

Convergence of norms + weak convergence =⇒ strong convergence.
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Proof of strong convergence =⇒ ‘no inviscid
dissipation’: the heart of the matter

The key lemma is:

Lemma
Let {uν}ν>0 precompact in L2(0,T ;L2(T2)), div-free. Then ∃

σ : [0,∞)→ [0,∞) such that lim
z→∞

σ(z) =∞

so that, for every 0 < δ < t < T(� t

δ
∥ων(s)∥2L2 ds

)2

σ

(� t

δ
∥ων(s)∥2L2 ds

)
≤

� t

δ
∥∇ων(s)∥2L2 ds.
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The lemma allows to obtain a differential inequality for

yν
δ = yν

δ (t) := ν

� t

δ
∥ων(s)∥2 ds,

namely

(⋆)
d
dt

yν
δ ≤ Mδ − (yν

δ )
2 σ

(
yν
δ

ν

)
.

We then show

Lemma
Let yν

δ ∈W 1,1([0,T ]) increasing functions sastisfying (⋆). Then

lim sup
ν→0

yν
δ (T ) = 0.

Strong convergence of initial data + continuity in time of weak Euler
solution allows δ → 0.
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OBS.
1. The key lemma is implicitly contained in LMPP 2021, although not in
this form.

Re-write key lemma as:

∃Υ = Υ(z) superquadratic, lim
|z|→∞

Υ(z)
z2 = +∞, such that:

{uν}ν>0 precompact in L2(0,T ;L2(T2)), div-free. Then, for every
0 < δ < t < T

Υ

(� t

δ
∥ων(s)∥2L2 ds

)
≤

� t

δ
∥∇ων(s)∥2L2 ds.
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Consequences of LMPP 2021:

u0 ∈ L2, ω0 ∈ X , X ⋐ H−1(T2) (compact imbedding!), ων bounded in
L∞

t (X ). Then any weak limit of uν is energy conservative.

Examples: Lp, p > 1; L(log L)α, α > 1/2; L(1,q), 1 ≤ q < 2. All of these
are rearrangement invariant subspaces of L1 compactly imbedded in
H−1. (Cf. H−1-stability, LNT 2000.)

What happens in L1 ∩ H−1? Or BM∩ H−1? Delort 1991/Vecchi, Wu
1993: exists weak solution, no concentrations in vorticity. Estimates do
not exclude concentrations in energy, i.e. energy defect.
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Vorticity in BM∩ H−1: vortex sheets.

What is a vortex sheet?

An idealized model for flows in which vorticity is concentrated in a thin
shear layer. Near thin shear layer/vortex sheet the velocity is
tangentially discontinuous while its normal component is continuous.

Vorticity is the curl of velocity; it is a measure of local rotation.

Vortex sheets are ubiquitous phenomena in ideal (or high Reynolds
number) flows – e.g. they appear in flow past an obstacle (for instance,
an airfoil – vortex sheets trailing an airplane wing), mixing of fluids with
different densities, etc.
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Vortex sheet flows arise, largely, as approximate models for nearly
inviscid flows past an obstacle. A ‘good’ approximation for the flow is
an irrotational velocity field (aka potential flow) except in a thin layer
close to the obstacle, where there are large gradients of velocity, i.e.,
where vorticity is concentrated. The creation of this shear layer is due
to the effect of (small) viscosity on the fluid-structure interaction.

Substitute shear layer by vortex sheet and set viscosity = 0.
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Mathematically: a vortex sheet is a curve in ideal fluid flow across
which the tangential component of velocity is discontinuous. The
evolution of a vortex sheet can be seen as an instance of interface
dynamics.

In particular, vorticity is concentrated along the “interface", a curve:

ω = γtδCt .

We may consider more general flows, for which

ω ∈ BM∩ H−1,

i.e., u has (locally) bounded kinetic energy (exclude point vortices).

Helena J. Nussenzveig Lopes (IM-UFRJ) Absence of anomalous dissipation February 6th , 2025 24 / 35



Mathematically: a vortex sheet is a curve in ideal fluid flow across
which the tangential component of velocity is discontinuous.

The
evolution of a vortex sheet can be seen as an instance of interface
dynamics.

In particular, vorticity is concentrated along the “interface", a curve:

ω = γtδCt .

We may consider more general flows, for which

ω ∈ BM∩ H−1,

i.e., u has (locally) bounded kinetic energy (exclude point vortices).

Helena J. Nussenzveig Lopes (IM-UFRJ) Absence of anomalous dissipation February 6th , 2025 24 / 35



Mathematically: a vortex sheet is a curve in ideal fluid flow across
which the tangential component of velocity is discontinuous. The
evolution of a vortex sheet can be seen as an instance of interface
dynamics.

In particular, vorticity is concentrated along the “interface", a curve:

ω = γtδCt .

We may consider more general flows, for which

ω ∈ BM∩ H−1,

i.e., u has (locally) bounded kinetic energy (exclude point vortices).

Helena J. Nussenzveig Lopes (IM-UFRJ) Absence of anomalous dissipation February 6th , 2025 24 / 35



Mathematically: a vortex sheet is a curve in ideal fluid flow across
which the tangential component of velocity is discontinuous. The
evolution of a vortex sheet can be seen as an instance of interface
dynamics.

In particular, vorticity is concentrated along the “interface", a curve:

ω = γtδCt .

We may consider more general flows, for which

ω ∈ BM∩ H−1,

i.e., u has (locally) bounded kinetic energy (exclude point vortices).

Helena J. Nussenzveig Lopes (IM-UFRJ) Absence of anomalous dissipation February 6th , 2025 24 / 35



Mathematically: a vortex sheet is a curve in ideal fluid flow across
which the tangential component of velocity is discontinuous. The
evolution of a vortex sheet can be seen as an instance of interface
dynamics.

In particular, vorticity is concentrated along the “interface", a curve:

ω = γtδCt .

We may consider more general flows, for which

ω ∈ BM∩ H−1,

i.e., u has (locally) bounded kinetic energy (exclude point vortices).

Helena J. Nussenzveig Lopes (IM-UFRJ) Absence of anomalous dissipation February 6th , 2025 24 / 35



No compactness and no anomalous dissipation

What can be done for ω0 ∈ L1(T2) ∩ H−1(T2) or BM(T2) ∩ H−1(T2)?

These spaces are not compact in H−1(T2), therefore no a priori strong
convergence of uν in L2(0,T ;L2(T2)).

Do not expect energy balance – inviscid dissipation is possible.

Instead, investigate anomalous dissipation.

Consider solutions of NS whose initial data converges, at least weakly,
in L2(T2).
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Theorem ( de Rosa, Park 2024; also Elgindi, Lopes Filho, NL
2024)
Assume

1 uν
0 → u0 strong-L2(T2),

2 ων bounded in L∞(0,T ;L1(T2)),
3 F ν ⇀ F weak-L2(0,T ;L2(T2)),
4 curlF ν(·, t) ⇀ curlF (·, t) weak-L1(T2), a.e. t ,
5

�
supν ∥ curlF ν(·, t)∥L1 dt <∞.

If
sup
ν

sup
t

sup
z

�
{|x−z|<r}

|ων | dx → 0 as r → 0

then

lim sup
ν→0

ν

� T

0
∥ων(·, t)∥2L2 dt = 0.

Under assumptions in Theorem any weak limit is a physically
realizable weak solution of 2D Euler, with u(0) = u0.

Helena J. Nussenzveig Lopes (IM-UFRJ) Absence of anomalous dissipation February 6th , 2025 26 / 35



Theorem ( de Rosa, Park 2024; also Elgindi, Lopes Filho, NL
2024)
Assume

1 uν
0 → u0 strong-L2(T2),

2 ων bounded in L∞(0,T ;L1(T2)),
3 F ν ⇀ F weak-L2(0,T ;L2(T2)),
4 curlF ν(·, t) ⇀ curlF (·, t) weak-L1(T2), a.e. t ,
5

�
supν ∥ curlF ν(·, t)∥L1 dt <∞.

If
sup
ν

sup
t

sup
z

�
{|x−z|<r}

|ων | dx → 0 as r → 0

then

lim sup
ν→0

ν

� T

0
∥ων(·, t)∥2L2 dt = 0.

Under assumptions in Theorem any weak limit is a physically
realizable weak solution of 2D Euler, with u(0) = u0.

Helena J. Nussenzveig Lopes (IM-UFRJ) Absence of anomalous dissipation February 6th , 2025 26 / 35



Theorem ( de Rosa, Park 2024; also Elgindi, Lopes Filho, NL
2024)
Assume

1 uν
0 → u0 strong-L2(T2),

2 ων bounded in L∞(0,T ;L1(T2)),
3 F ν ⇀ F weak-L2(0,T ;L2(T2)),
4 curlF ν(·, t) ⇀ curlF (·, t) weak-L1(T2), a.e. t ,
5

�
supν ∥ curlF ν(·, t)∥L1 dt <∞.

If
sup
ν

sup
t

sup
z

�
{|x−z|<r}

|ων | dx → 0 as r → 0

then

lim sup
ν→0

ν

� T

0
∥ων(·, t)∥2L2 dt = 0.

Under assumptions in Theorem any weak limit is a physically
realizable weak solution of 2D Euler, with u(0) = u0.

Helena J. Nussenzveig Lopes (IM-UFRJ) Absence of anomalous dissipation February 6th , 2025 26 / 35



OBS. de Rosa, Park 2024: flows with no forcing. Elgindi, Lopes Filho,
NL 2024: allow forcing plus completely different proof, relies on new a
priori estimate.

Recall Nash’s inequality:(
∥f∥2L2

)2
≤ ∥f∥2L1∥∇f∥2L2

We begin with a refinement:

Proposition

Let F ⊂ L1(T2) ∩ H1(T2) such that
A ∥f∥L1 ≤ K , for all f ∈ F ;

B lim
r→0

sup
f∈F

sup
z

�
{|x−z|<r}

|f (x)|dx = 0.

Then ∃Υ ∈ C1, convex, increasing, superquadratic such that, ∀f ∈ F ,

Υ(∥f∥2L2) ≤ ∥∇f∥2L2
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Obs. Υ = ΥK . By construction Υ = (Φ−1)2, Φ concave, increasing,
sublinear.

Discussion of proof of Theorem, ELN 2024 version:
Use refinement of Nash for

F = {ων(·, t), 0 < t < T , ν > 0}.

Set ζνδ = ζνδ (t) := ν

� t

δ
∥ων(s)∥2L2 ds. Then ζνδ satisfies the differential

inequality

d
dt

ζνδ ≤ Mδ − ν2(t − δ)Υ

(
ζνδ

ν(t − δ)

)
.

But dζνδ /dt = ν∥ων(t)∥2 ≥ 0. Therefore

ν2(t − δ)Υ

(
ζνδ (t)

ν(t − δ)

)
≤ Mδ.

=⇒ ζνδ (t) ≤ ν(t − δ)Φ

( √
Mδ

ν
√

t − δ

)
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Letting

Xν :=

√
Mδ

ν
√

T − δ

we get

ζνδ (T ) ≤
√

Mδ

√
T − δ

Φ(Xν)

Xν
.

But Xν → +∞ as ν → 0 so, since Φ sublinear, ζνδ (T )→ 0.

Recall ζνδ (t) = ν

� t

δ
∥ων(s)∥2L2 ds. Still need to analyze

lim
ν→0

ν

� δ

0
∥ων(s)∥2L2 ds.

This limit vanishes since uν
0 → u0 strong-L2(T2) and weak limits of uν

are weak 2D Euler solutions which, in turn, are right-continuous in time
into L2 at t = 0.
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In the refinement of Nash’s inequality Υ = (Φ−1)2. The concave,
increasing, sublinear and C1 function Φ has a very explicit form:

Recall ∥f∥L1 ≤ K , f ∈ F . Introduce

ϑ(r) =
1
K

sup
f∈F

sup
z∈T2

�
{|z−y |<r}

|f (y)| dy . (2)

Set
η(r) = max

{
ϑ(r),

r
π

}
, for 0 ≤ r ≤ π (3)

and

η = η(r) =
{

η(r) if 0 ≤ r ≤ π,
1 if r > π.

(4)

Then we can use

Φ = Φ(x) =
� x

0
C
√

η
(
πy−1/4

)
dy , for x ≥ 0.
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Suppose, now, that F ⊂ H1(T2) and that it is bounded in
BM(T2) ∩ H−1(T2).

Assume that all λ ∈ F are of the form

λ = µ+ w ,

with µ ∈ BM(T2), µ ≥ 0, and w ∈ Lp(T2), some p > 1.

In addition, suppose that

∥µ∥H−1 + ∥w∥Lp ≤ K .

Then, for large x , we can use

Φ = Φ(x) = C
x

4
√
log x

.
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Applications

Corollary

Let ων
0 be a bounded sequence in BM(T2) ∩ H−1(T2). Suppose

ων
0 = µν

0 + wν
0 , with µν

0 ∈ BM(T2), µ0 ≥ 0, and wν
0 ∈ L1(T2) and

wν
0 ⇀ w weak-L1(T2). Then there is no anomalous dissipation for uν .

Explicit construction of Υ = (Φ−1)2 allows us to show:

Corollary

If wν
0 is uniformly bounded in Lp(T2), some p > 1, then

ν

� T

δ
∥ων(·, t)∥2L2 dt ≲ | log ν|−1/4 as ν → 0.

Obs. Not necessarily sharp.
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0 ⇀ w weak-L1(T2). Then there is no anomalous dissipation for uν .

Explicit construction of Υ = (Φ−1)2 allows us to show:

Corollary

If wν
0 is uniformly bounded in Lp(T2), some p > 1, then

ν

� T

δ
∥ων(·, t)∥2L2 dt ≲ | log ν|−1/4 as ν → 0.

Obs. Not necessarily sharp.
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Phantom vortices: example of anomalous dissipation, but initial data
not compact in L2

Let φ ∈ C∞
c (0,+∞). Assume� +∞

0
rφ(r) dr = 0 and

� +∞

0
r |φ(r)| dr = 1.

Let ω0 = ω0(x) = φ(|x |) and set

ων
0 = ων

0(x) =
1
ν2ω0

(x
ν

)
.

Then
1 supt ∥uν(·, t)∥L2 bounded;
2 supt ∥ων(·, t)∥L1 bounded;
3 ων ⇀ 0 weak*-L∞(0,T ;BM) and uν ⇀ 0 weak*-L∞(0,T ;L2) ;

4 lim infν→0 ν

� T

ν
∥ων(·, s)∥2L2 ds ≥ C > 0.

Note:

|ων
0 |⇀ δ0 weak*BM. However, |uν

0 |2 ⇀ δ0 weak*BM.
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Figure: Orbita Mathematicae: a new UMALCA journal
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Thank you
Grazie
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