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The isoperimetric inequality

Theorem

If E is a Lebesgue measurable set with the same measure of a ball
B, then

P(E ) ≥ P(B) .

The equality holds if and only if E is a ball.

Some proofs in the two-dimensional case:

1. Zenodorus (c. 200 - c. 140 BC): polygons

2. Steiner (1838): necessary conditions for the existence

3. Weierstrass (1870): first rigorous proof

4. Hurwitz (1901): Wirtinger’s inequality

Some proofs in the N-dimensional case:

1. Brunn-Minkowski (1987-1996): Minkowski content

2. Aleksandrov (1958): boundary with constant mean curvature

3. De Giorgi (1958): symmetrization

4. Gromov (1986): mass transportation

5. Cabré (2000): solutions of the Neumann problem for the laplacian
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Theorem

If E is a Lebesgue measurable set with the same measure of a ball
B, then

P(E ) ≥ P(B) .

The equality holds if and only if E is a ball.

Can we estimate the distance from the ball if we know
P(E )− P(B)?

The isoperimetric deficit is defined as

δ(Ω) =
P(Ω)− P(B)

P(B)
, |B| = |Ω| , B = ball
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The quantitative isoperimetric inequalities
[Distance (Ω, ball of same measure)]p ≤ C (n)δ(Ω) (or a function of δ)

Some distances

1.
dH(Ω,BG )

r
, |BG | = |Ω| = ωnr

n , G = barycentre of Ω

(”uniform spherical deviation”)a

2. λ(Ω) = min
x∈RN

{
|Ω∆Bx |
|Ω|

, |Bx | = |Ω|
}

(”Fraenkel asymmetry”)b

3. λ0(Ω) =
|Ω∆BG |
|Ω|

, |BG | = |Ω| , G = barycentre of Ω

(”barycentric asymmetry”)c

4. λH(Ω) = min
x∈RN

{
dH(Ω,Bx )

r
, |Bx | = |Ω| = ωnr

n

}
(”deviation from the spherical shape”)d

a
Fuglede 1989, convex sets, nearly spherical sets

b
Hall, Hayman, Weitsman 1991, Fusco, Maggi, Pratelli 2008, Figalli, Maggi, Pratelli 2010, Cicalese, Leonardi

2012, Dambrine, Lamboley, 2018
c

Fuglede 1993, convex sets
d

Fusco, Gelli, Pisante, 2011
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A first quantitative isoperimetric inequality, with the Fraenkel
asymmetry:

λ(Ω) = min
x∈RN

{ |Ω∆Bx |
|Ω| , |Bx | = |Ω|

}
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Theorem (Fusco, Maggi and Pratelli, 2008)

There exists CN > 0 such that for every Ω, λ(Ω)2 ≤ CN δ(Ω).

What is the value of the optimal constant CN?

Theorem (Campi 1992, Alvino, Ferone and Nitsch 2011)

inf
Ωconvex⊂R2 6=B

δ(Ω)

λ(Ω)2
≈ 0.406;

the infimum is realized by an explicitely described stadium.
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Some estimates of inf
Ω⊂R2

δ(Ω)

λ2(Ω)
= I

I Hall-Hayman-Weitsman: I ≥ 0.02

I Figalli-Maggi-Pratelli: inf
Ω⊂Rn

δ(Ω)

λ2(Ω)
≥ (2− 2

1
n′ )3

1812 · n14
therefore

I ≥ 3.7× 10−10

I Zhao-Ding-Jiang : I ≥ 0.0625

I Conjecture (Cicalese, Leonardi; Bianchini, C., Henrot):
I ≈ 0.393, realized by an explicitely described mask1

x0−x0

O1

O2

O3

BA

α

θ
γ3

γ2γ1

1domain with regular boundary, composed by arcs of circle, with 2
symmetry axes and 2 ”Fraenkel balls”
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Theorem (C. Bianchini, G.C. and A. Henrot)

There exists a set Ω∗ 6= B which minimizes δ(Ω)
λ2(Ω)

among all the

subsets of R2.

I Ω∗ has at least two optimal balls for the Fraenkel asymmetry.

I Ω∗ is not convex and has at most six connected components.

N.B.: Cicalese and Leonardi had shown that Ω∗ is C 1,1 and its
boundary is composed of arcs of circle. In any connected
component of R2 \ ∪x∈Z(Ω∗)(x + ∂B), ∂Ω∗ is a union of arcs of
circle with the same radius (Z (Ω∗): set of the centers of the
optimal balls).

N.B.: Our result gives a new proof of the quantitative
isoperimetric inequality in the plane!
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Idea of our proof of the existence of a minimizer:
sequences Ωn converging to the ball

We symmetrize each set Ω of the sequence in this way:

Ω∗
A2A1

A4 A3

Ω

ΩOUT

ΩIN

Ω∗ is obtained by distributing half of the external matter on the
north pole and half on the south pole, while half of the internal
matter is put on the west pole and half on the east pole, preserving
the total lengths of ∂ΩOUT ∩ ∂B and ∂ΩIN ∩ ∂B.
∂Ω∗ by composed of arcs of circle.

N.B.: Ω∗ is well defined if |Ω∆B| is small.
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Exclusion of sequences converging to the ball

Theorem

Let {Ωε}ε>0, be a sequence of sets, such that |Ωε| = π = |B|
where B is a unit ball. Assume that |B∆Ωε| =

4ε

π
. Then

lim inf
ε→0

δ(Ω∗ε)

λ2(Ω∗ε)
≥ π

8(4− π)
.

θ1

η1

θ2
η2

O

B1A1

O1 A2

B2

O2

area ε
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Exclusion of sequences converging to the ball

This rearrangement decreases (asymptotically)
δ(Ω)

λ2(Ω)
:

Corollary

Let ε > 0. Let Ωε be a sequence of sets converging to a ball B
such that |B∆Ωε| = 4ε

π . Then

lim inf
ε→0

δ(Ωε)

λ2(Ωε)
≥ π

8(4− π)
≈ 0.46

Recall that inf
Ωconvex⊂R2 6=B

δ(Ω)

λ(Ω)2
≈ 0.41
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IF one is able to prove that

I the optimal set Ω∗ has two perpendicular axes of symmetry;

I the optimal set has exactly two optimal balls B1 and B2

realizing the Fraenkel asymmetry,

then he is led to solve a minimization problem in finite dimension.

Therefore one can also compute inf
Ω

δ(Ω)

λ2(Ω)
...

x0−x0

O1

O2

O3

BA

α

θ
γ3

γ2γ1
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A quantitative isoperimetric inequality with the barycentric
asymmetry:

λ0(Ω) =
|Ω∆BG |
|Ω| , |BG | = |Ω| , G = barycentre of Ω

N.B.: λ0(Ω) ≥ λ(Ω) and therefore
δ(Ω)

λ2(Ω)
≥ δ(Ω)

λ2
0(Ω)

.

Can we compute inf
Ω

δ(Ω)

λ2
0(Ω)

and then get an estimate from below

of
δ(Ω)

λ2(Ω)
?

N.B.: Estimate from above: inf
Ω

δ(Ω)

λ2(Ω)
≤ δ(mask)

λ2(mask)
≈ 0.393
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The quantitative isoperimetric inequality with λ0

Problem: study δ(Ω) ≥ C [λ0(Ω)]2 in the plane

Existence of a constant C :

I we deduce from Fuglede (1989) : nearly spherical sets
(star-shaped sets with respect to their barycenter, which may
be taken to be 0):
E = {y ∈ R2 : y = tx(1 + u(x)), x ∈ S1, t ∈ [0, 1]},
u : S1 → R positive, ‖u‖L∞ ≤ 3

40 and ‖∇u‖L∞ ≤ 1
2

(he also studied higher dimensions!)

I Fuglede (1993): convex sets Ω ⊂ Rn
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The quantitative isoperimetric inequality with λ0

Theorem (C. Bianchini, G.C., A. Henrot)

There exists a constant C > 0 such that
δ(Ω)

λ0(Ω)2
≥ C for every

connected compact set Ω of the plane.

Why connected sets? One can construct {Ωε}, non connected,

such that δ(Ωε)
λ2

0(Ωε)
→ 0, as ε→ 0 (two discs of very different radii far

from each other).

Why compact sets? We use Blaschke-Lebesgue theorem!

Theorem (C. Gambicchia, A. Pratelli)

For every D > 0, there exists a constant CN(D) > 0 such that
δ(Ω)

λ0(Ω)2
≥ CN(D) for every set Ω ⊂ RN with diameter less than

D|E | 1
N .
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Thank you for your attention !
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