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From theory to applications, and viceversa

• 1944: Franklin Roosvelt asked a report to the Director of the Research and
Development Office, Vannevar Bush, on the role that science will have after
the war.
Bush: “Basic research is the pacemaker of all technological progress".
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From theory to applications, and viceversa

1997: Pasteur square (Donald E. Stokes, US-NSF advisor).
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The pendulum
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The pendulum, invariant tori and the Moon
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The pendulum, invariant tori and the Moon

For (y, x) ∈ R× T, ε > 0 small (e.g., ε = 0.04):

H(y, x) =
y2

2
− ε cos(x)

or, equivalently, we can consider

H(y, x − t) =
y2

2
− ε cos(2x − 2t)

with t being the time.
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The pendulum, invariant tori and the Moon

H(y, x, t) =
y2

2
−ε

[
C2(e) cos(2x−2t)+C3(e) cos(2x−3t)+C4(e) cos(2x−4t)

]

• Conservative spin–orbit problem:
1 triaxial satellite S (I1 < I2 < I3);
2 S moving on a Keplerian orbit

around P;
3 spin–axis perpendicular to the

orbit plane;
4 rigid satellite.

• Here ε represents the equatorial oblateness (ε = 3
2

I2−I1
I3

), e is the orbital
eccentricity and the previous picture was for e = 0.
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H(y, x, t) =
y2

2
−ε

[
C2(e) cos(2x−2t)+C3(e) cos(2x−3t)+C4(e) cos(2x−4t)

]

• Conservative spin–orbit problem:
1 triaxial satellite S (I1 < I2 < I3);
2 S moving on a Keplerian orbit

around P;
3 spin–axis perpendicular to the

orbit plane;
4 rigid satellite.

• The frequency is ω = ∂H
∂y = y and for

the Moon ω = 1, which corresponds to the
synchronous or 1:1 spin-orbit resonance
with
period of rotation = period of revolution.

• Here ε represents the equatorial oblateness (ε = 3
2

I2−I1
I3

), e is the orbital
eccentricity and the previous picture was for e = 0.
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The pendulum, invariant tori and the Moon

When e > 0 (for a fixed ε), we see chaos and less rotational (KAM) tori.
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The pendulum, invariant tori and the Moon

• Eccentricity e = 0.01, oblateness parameter ε = 0.04 (Poincaré map for t
mod. 2π).
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The pendulum, invariant tori and the Moon

• Eccentricity e = 0.1, oblateness parameter ε = 0.04 (Poincaré map for t
mod. 2π).
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The pendulum, invariant tori and the Moon

• Eccentricity e = 0.2, oblateness parameter ε = 0.04 (Poincaré map for t
mod. 2π).
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The pendulum, invariant tori and the Moon

• Eccentricity e = 0.5, oblateness parameter ε = 0.04 (Poincaré map for t
mod. 2π).
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The pendulum, invariant tori and the Moon

• Oblateness parameter ε = 0.001, eccentricity e = 0.1, (Poincaré map for t
mod. 2π).
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The pendulum, invariant tori and the Moon

• Oblateness parameter ε = 0.05, eccentricity e = 0.1, (Poincaré map for t
mod. 2π).

A. Celletti (Univ. Roma Tor Vergata) between pure and applied mathematics Palermo, 6 February 2025 14 / 39



The pendulum, invariant tori and the Moon

• Oblateness parameter ε = 0.1, eccentricity e = 0.1, (Poincaré map for t
mod. 2π).
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The pendulum, invariant tori and the Moon

Can we prove the stability of the rotation of the Moon?

Yes, using Kolmogorov-Arnold-Moser theory.
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KAM theory

• KAM theory: [Kolmogorov1954], [Arnold1963], [Moser1962].

KAM theory: studies the persistence of invariant tori, with fixed frequency,
in a nearly-integrable Hamiltonian.

• KAM theory can be developed under two main assumptions:

a Diophantine (non resonance) condition on the frequency (to deal with
small divisors):

|ω · k| ≥ 1
C|k|τ

> 0

a non–degeneracy condition of the Hamiltonian (to ensure the solution of
suitable equations providing a sequence of approximate solutions).
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KAM theory: constructive algorithm

• KAM theory: constructive algorithm to give an estimate on ε such that a
quasi-periodic torus with fixed frequency ω exists for ε ≤ εKAM(ω).

⇝ Does KAM theory provide realistic estimates with εKAM(ω) ≃ εastr(ω) or
εKAM(ω) ≃ εexp(ω)?

• For a long time, since Hénon application to the 3BP:

εKAM(ω) << εastr(ω) < εexp(ω) .
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Effective KAM theory

▷ a-posteriori approach+automatic reducibility in [Llave, LGJV]): effective
KAM estimates, no need to be nearly-integrable and no need to use
action-angle variables!

• Main ingredients of the proof:
Diophantine condition and non-degeneracy
complex extension to get Cauchy estimates; given an analytic function
on a domain, Cauchy estimates provide a bound on the norm of the
partial derivatives over a smaller domain
a Newton quadratic iteration method to find approximate solutions:

H0 = Z0 + εR0 →
→ H1 = Z1 + ε2R1 →

→ H2 = Z2 + ε4R2 →
→ H3 = Z3 + ε8R3

...
Computer-assisted proofs to get rigorous estimates.
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Computer-assisted technique

▷ Effective KAM proofs with explicit estimates on parameters imply very
long computations⇝

⋄ use a computer to perform expansions and computations
⋄ need to control rounding-off and propagation errors

⇒ computer-assisted proof (CAP)

▷ CAP: rigorous control of computer errors through, e.g., interval arithmetic
(replace real number by intervals and implement an algebra over the
intervals).
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Spin–orbit: conservative KAM theory

Theorem [A.C. (1990)]

- Consider the conservative spin–orbit Hamiltonian with trigonometric potential R
(finite number of Fourier harmonics).
- Fix two frequencies ω− < 1 < ω+, satisfying the Diophantine condition.
- Then, for the true eccentricity of the Moon e = 0.0549, there exist invariant tori
with frequencies ω−, ω+, bounding the motion of the Moon, for any
ε ≤ εMoon = 3.45 · 10−4 (astronomical value).

⇝ Hamiltonian in a 3-dim phase space ⇒ trapping between 2-dim KAM tori ⇒
infinite time stability.
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The dissipative spin-orbit problem

WARNING: satellites are not rigid!

• Dissipative spin–orbit problem:
1 triaxial satellite S (I1 < I2 < I3);
2 S moving on a Keplerian orbit

around P;
3 spin–axis perpendicular to the

orbit plane;
4 tidal torque due to non–rigidity of

the satellite.
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Dissipative spin–orbit problem

• Conservative spin-orbit equation: 1–dim, time–dependent Hamiltonian:

H(y, x, t) =
y2

2
+ ε R(x, t) .

• Hamilton’s equations: {
ẋ = y
ẏ = −εRx(x, t)

• Equation of motion:
ẍ + εRx(x, t) = 0

• Dissipative spin-orbit equation with a dissipation, which is linear in the
velocity (and conformally symplectic):

ẍ + εRx(x, t) = −λ (ẋ − µ)
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Dissipative spin–orbit problem

• KAM theory for dissipative systems:
▷ [Moser1967], see also [Broer, Simó, etc.]
▷ Calleja-Celletti-Llave (JDE 2013): efficient KAM theory for conformally
symplectic (dissipative) systems.

• Adding a dissipation to a Hamiltonian system is a very singular perturbation:
- Hamiltonian systems: many quasi-periodic solutions,
- dissipative systems: few attractors + need to include drift parameters.
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Conformally Symplectic KAM theory

Definition

Let M ⊆ Rn × Tn be a symplectic manifold with symplectic form Ω. A
diffeomorphism f

µ
: M → M is conformally symplectic, if there exists a function

λ : M → R such that
f ∗
µ
Ω = λΩ .

• λ = 1: symplectic; otherwise we assume λ constant.

Definition

Let a family f
µ
: M ⊆ Rn × Tn → M of conformally symplectic maps. A KAM

torus with ω ∈ D(C, τ) is a n–dimensional invariant torus described parametrically
by an embedding K : Tn → M and a drift µ which solve the invariance equation:

f
µ
◦ K(θ) = K(θ + ω) .
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KAM Theorem (references:
Llave-Gonzalez-Jorba-Villanueva & Calleja-Celletti-Llave)

Theorem (CCL, JDE, 2013 (analytic case))
• Let f

µ
be conformally symplectic, ω ∈ D(C, τ), ρ > 0.

• (K0, µ0
) approximate solution:

f
µ

0

◦ K0(θ) = K0(θ + ω) + E0(θ) .

• Assume that the solution is sufficiently approximate, i.e. ∥E0∥ρ small.
• Assume a suitable non–degeneracy condition (on coordinates and parameters).

• Then, there exists an exact solution (K∗, µ∗), such that

f
µ
∗
◦ K∗(θ) = K∗(θ + ω)

and for 0 < δ < ρ
2 :

∥K∗ − K0∥ρ−2δ ≤ C1 C2 δ−2τ ∥E0∥ρ , |µ∗ − µ
0
| ≤ C2 ∥E0∥ρ (C1,C2 > 0) .
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KAM theory for the dissipative spin–orbit problem

Theorem [Calleja-A.C.-Gimeno-Llave, 2022-2024]

- Consider the dissipative spin-orbit problem and consider its Poincaré map.
- Fix a Diophantine frequency, e.g. equal to the golden ratio ω =

√
5+1
2 , ω ∈ D(C, τ).

- Fix the dissipative factor λ = 10−3.
- Then, for given parameter values((((((hhhhhhsmall enough, i.e. ε = 0.0116, there exists an
invariant attractor with frequency ω.

• Conclusions:
▷ Astronomical value: εMoon = 3.45 · 10−4.
▷ KAM theoretical value: εKAM = 1.16 · 10−2.
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Classification of regular and chaotic dynamics

• Classify types of motion of the
conservative spin-orbit problem
through CNN, starting from time
series.

• Use chaos indicators to distinguish
between chaotic, rotational, librational
motions.

• InceptionTime CNN: at each of the 5
layers of a CNN, it applies a set of
convolution operations to the time
series, which creates a transformation
of the input data, so that the series
becomes easier to be classified.
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Classification of regular and chaotic dynamics

• Chaos indicators: Fast Lyapunov Indicators (FLI) and Frequency Map
Analysis (FMA).

1 Given an initial condition, generate a finite number of time series as the
solution at different time intervals with fixed step size.

2 For each time series, compute FLI or FMA and assign a label:
chaotic 7→ 0, librational 7→ 1, rotational 7→ 2.

3 InceptionTime: train on some data sets, validate and complete the
cartography (0-1-2).
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What next?

• Among possible other subjects, we can consider the dynamics of a ring
(massless) particle around a central body:
▷ planets: well approximated by ellipsoids with small oblateness and
elongation (planets with rings: Saturn, Jupiter, Uranus, Neptune)
▷ small bodies: have irregular shape (small bodies with rings: dwarf planets
(136108) Haumea, (50000) Quaoar and the Centaur (10199) Chariklo).
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Rings

• We can model the small body as:
▷ triaxial ellipsoid with high oblateness (I2 − I1)/I3 and elongation
(2I3 − I2 − I1)/I3
▷ topographic feature (sphere with a mass anomaly on the equator)

• Haumea, Chariklo, Quaoar have rings in a 1:3 spin-orbit resonance!
(rotational/orbital periods=1/3)

Why not 1:1, 1:2, 2:5, 2:3, etc.?
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Rings

• To answer we need:

▷ good model (gravitational potential expanded in spherical harmonics)
▷ good variables (epicyclic variables) allowing to properly define corotation
and Lindblad resonances
▷ perturbation theory to expand around the resonance
▷ stability analysis of the equilibria
▷ bifurcation theory.

Ongoing works with Sara Di Ruzza and Irene De Blasi.
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